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replica symmetry breaking ansatz
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Department of Physics, Nara Women’s University, Nara 630, Japan

Received 19 April 1996, in final form 24 May 1996

Abstract. We study learning from stochastic examples by perceptrons with Ising weights in
the framework of statistical mechanics. Under the one-step replica symmetry breaking ansatz,
the behaviour of learning curves are classified according to some local property of the rules
by which examples are drawn. The conditions for the existence of perfect learning together
with other behaviours of the learning curves are given precisely. The results agree with those
obtained by Seung (1995) using a refined annealled approximation.

In recent years, the problem of learning from examples by feed forward networks has
attracted many researchers. In order to investigate how good a generalization ability can
be acquired through learning, learning curves of the generalization errorεg, which is the
probability of false prediction on a novel example, have been calculated for various types of
networks [1]. These studies revealed the following feature of learning. When the number
of examplesp is small relative to the number of synaptic weightsN , the learning curves
exhibit a rich behaviour depending on the details of the networks. In contrast, only a few
types of behaviour are observed whenα = p/N is large [2–7]. For example, learning
curves of networks with continuous weights all exhibit power laws [2–8],

(εg − εmin) ∝ α−γ .

On the other hand, the learning behaviour for the case of discrete weights is quite
different from those for the continuous cases [9, 10]. The most drastic difference is the
existence of perfect learning for the Ising networks in which the values of synaptic weights
are constrained to+1 or −1. That is, for the deterministic and realizable cases, learners’
weight vectors coincide with the teacher’s weight vector at a finiteα. Then, natural questions
arise about the existence of perfect learning when the weights are Ising and the rule to be
learnt is stochastic.

Recently, Seung answered these questions by using a refined annealled approximation
[11]. The target rule he considered is a (stochastic) relation between theN -dimensional
input vectorx and binary outputr ∈ {1, −1}. He classified the learning behaviour of
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Ising networks by introducing the following two exponentsy and z. The first exponent
y is associated withρ(εg) which is the logarithm of the number of weight vectors whose
generalization errors have a valueεg. He assumed thatρ(εg) increases as

ρ(εg) ∼ O((1εg)
y)

when1εg = εg − εmin is small, whereεmin is the minimum value of the generalization error
obtained by the unique optimal weight vectorwo. The second exponentz is introduced
to characterizeed(w, wo) which is the probability that the output for the weight vectorw
differs from that for the optimal weight vectorwo. He also assumed thated(w, wo) is
scaled as follows:

ed(w, wo) ∼ O((1εg)
z).

The minimum-error algorithm, which minimizes the number of false predictions on the
presented examples, is a natural learning strategy. He classified the behaviour of learning
with this algorithm according to the values ofv ≡ y + z. His results are as follows: (a)
there is a first-order transition forv > 2; (b) 1εg decays as a power law as∼ α− 1

2−v for
v < 2; and (c) there is a second-order transition or1εg decays exponentially forv = 2. It
should be remarked that these results concern the upper bounds of the generalization errors,
which might differ from the typical or average behaviour. Further, although his method is a
refined one, the application of annealled approximations to learning unrealizable rules could
yield very wrong behaviour [2, 11]. Therefore, it is necessary to investigate the problem by
other methods and judge the validity of the above results.

The purpose of this paper is to investigate conditions for the existence of perfect learning
in the problem of learning from stochastic examples by perceptrons with Ising weights in
the framework of statistical mechanics. In order to perform a more precise analysis than
the annealled approximation, we investigate a stochastic learning model with Ising weights
by the replica method with the one-step replica symmetry breaking (RSB) ansatz.

The problem considered in this paper is as follows. We consider a stochastic target
relation between theN -dimensional input vectorx and binary outputr ∈ {1, −1} which is
represented by a conditional probabilitypr(r|x). It is assumed that the input vectorx is
normalized as|x| = √

N andpr(r|x) is a function of the inner product between the input
x and the optimal Ising weightwo as

pr(+1|x) = P(u0) = 1 + P(u0)

2
(1)

u0 ≡ (x · wo)/
√

N.

We further assume that the functionP(u) is increasing with respect tou and behaves as

P(u) ' a sgn(u)|u|δ (δ > 0) (2)

nearu = 0. Further,P(−u) = −P(u) is assumed for brevity.
In a learning model studied by Opper and Haussler [4], the target rule is a perceptron,

whose sign of output is reversed to the opposite by noise with a probabilityλ (output
noise model). Such a rule is represented by the conditional probabilitypr(+1|x) =
1 − pr(−1|x) = λ + (1 − 2λ)2[(wo · x)/

√
N ], which corresponds to the case ofδ = 0 in

our model. In the above expression,2(x) is the Heaviside function. Another typical noise
is the input noise studied by Györgyi and Tishby [3] (input noise model). In their model,
the target rule is a perceptron whose input is corrupted by uncorrelated Gaussian noise with
mean zero andr = sgn[wo · (x+η)] is finally returned. The conditional probability in this
case is represented as

pr(+1|x) = 1 − pr(−1|x) = H [−(wo · x)/
√

〈(wo · η)2〉]
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where

H(u) =
∫ ∞

u

dx exp[−x2/2]/
√

2π

and 〈· · ·〉 represents the average overη. This corresponds to the case ofδ = 1 in our
model. Namely, although assumption (2) is seemingly artificial and weights in the above
two models are assumed not discrete but continuous, our model includes the above typical
models of learning disturbed by noise with specific values of the parameterδ.

The results obtained in this paper are summarized as follows. It turns out that the replica
symmetry (RS) solution becomes inadequate for the case of largeα and the RSB solution
should be considered instead. The behaviour ofεg is classified into the following three
categories according to the value ofδ.

(1) If δ < 1
2, whenα increases the RSB solution disappears at a finiteα and a first-order

phase transition from the RSB solution to perfect learning takes place.
(2) If δ > 1

2, perfect learning does not exist andεg decays as a power law with a
logarithmic correction,1εg ∼ (ln α/α)(1+δ)/(2δ−1).

(3) If δ = 1
2, perfect learning does not exist andεg decays exponentially,1εg ∼ e−3F0α,

whereF0 is a constant.
In our model, the exponentsy andz are expressed asy = 2/(1+δ), z = 1/(1+δ) = y/2

respectively, and thenv = 3/(1+ δ). Therefore,δ = (3− v)/v follows and it is found that
our results on the typical learning behaviour are consistent with Seung’s results which are
the upper bounds of the learning curves.

Now, let us proceed to detailed calculations. We assume that a set ofp examples
ξp = {(x1, r1), (x2, r2), . . . , (xp, rp)} is obtained as follows. xi is independently and
uniformly drawn from anN -dimensional sphere of radius

√
N at the origin andri is obtained

with the conditional probabilitypr(ri |xi ) for eachxi . For the given realization of examples
ξp, the number of false predictions is defined as

E[w, ξp] =
p∑

µ=1

2(−rµuµ) uµ ≡ (xµ · w)/
√

N. (3)

The performance of the learning is evaluated by the generalization errorεg. This is
expressed as

εg = 〈〈P(u0)(1 − 2(u)) + (1 − P(u0))2(u)〉〉

= εmin +
∫ ∞

0
DyP(y)H

(
Ry√

1 − R2

)
εmin = 1

2 −
∫ ∞

0
DyP(y)

(4)

where〈〈· · ·〉〉 represents the average over a novel example andεmin is the minimum value of
the generalization error obtained by the optimal weightwo. R is the overlap between the
optimal weight vector and a weight vector of a learner, andDy = exp(−y2/2) dy/

√
2π .

In particular, when1R = 1 − R is small, we obtain the relation

(εg − εmin) ∝ (1R)(1+δ)/2. (5)

From the energy defined by equation (3) the partition functionZ with inverse
temperatureβ is given by

Z = Trw e−βE[w,ξp ] = Trw
p∏

µ=1

[e−β + (1 − e−β)2(rµuµ)].
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The average free energy per weightf is calculated by the standard recipe

−βNf = 〈〈ln Z〉〉ξp
= lim

n→0

1

n
(〈〈Zn〉〉ξp

− 1)

where〈〈· · ·〉〉ξp
denotes the average over quenched variables.

〈〈Zn〉〉ξp
becomes a function of several replica order parameters, namely the overlap

between weight vectors of learnersqαβ = (wα · wβ)/N , its conjugateq̂αβ , the overlap
between the weight vector of a learner and the optimal weight vectorRα = (wo · wα)/N ,
and its conjugatêRα. First, we consider the RS solution which has the simplest symmetry.
That is, we putqαβ = q, q̂αβ = q̂, Rα = R and R̂α = R̂. Then, the RS free energyfRS is

−βfRS(q, q̂, R, R̂, β) = − q̂

2
(1 − q) − RR̂ + α

∫
Dy2P(y)

×
∫

Du ln H̃

(√
q − R2u − Ry√

1 − q

)
+

∫
Dt ln[2 cosh(

√
q̂t + R̂)]

H̃ (t) ≡ e−β + (1 − e−β)H(t).

(6)

Since we adopt the minimum-error algorithm as the learning strategy, we have to choose
weights with minimum errors, and on that account we take the limitT → +0. However, it
turns out that the entropy of the RS solution becomes negative asT → +0 in the case of
largeα. Thus, we have to consider the breaking of the replica symmetry [12]. In the one-
step RSB solution, the matrixqαβ is divided into(n/m)2 small matrices with the dimension
m×m. The components of each off-diagonal matrix are allq0 and the components of each
diagonal matrix areq1 except for diagonal components with the value zero. Likewise,q̂0

and q̂1 are defined for the matrix̂qαβ . Further,Rα = R and R̂α = R̂ are assumed. Then,
the one-step RSB free energy,fRSB, is

−βfRSB(q0, q̂0, q1, q̂1, R, R̂, β, m) = − q̂1

2
(1 − q1)

+m

2
(q̂0q0 − q̂1q1) − RR̂ + α

m

∫
Dy2P(y)

∫
Dz0 ln

×
∫

Dz1

{
H̃

(√
q0 − R2z0 + √

q1 − q0z1 − Ry√
1 − q1

)}m

+ 1

m

∫
Dz0 ln

∫
Dz1

[
2 cosh

(√
q̂0z0 +

√
q̂1 − q̂0z1 + R̂

)]m

. (7)

Further, according to Krauth–Ḿezard [13], we take the limitsq1 → 1 andq̂1 → ∞. Thus,
we obtain

fRSB(q0, q̂0, q1 = 1, q̂1 = ∞, R, R̂, β, m) = 1

m
fRS(q0, m

2q̂0, R, mR̂, βm). (8)

From this relation, the equations forq0, q̂0, R, R̂ and m become the coupled equations of
the saddle-point equations for the RS solution and the equation ofSRS = 0, whereSRS is
the entropy for the RS solution. Let us denote the solutions of these equations byq = qc,
q̂ = q̂c, R = Rc, R̂ = R̂c and β = βc. Then, the one-step RSB solutions are expressed
by q0 = qc, q̂0 = (β/βc)

2q̂c, R = Rc, R̂ = (β/βc)Rc andm = βc/β. Thus, to obtain the
T → +0 limit we only have to know the solutions atT = Tc.

Next, we study the asymptotic behaviour. In order to investigate the advance of learning
we take the limitsα → ∞, qc → 1 andRc → 1. As suggested by numerical results, we
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Figure 1. Numerical simulations were performed both for (a) the input noise model and (b)
the output noise model with the system sizeN = 16. In both systems, noise levels were set
such thatεmin = 1

4 . Abscissas areα and ordinates areεg, R, and q for RS or q0 for RSB.
Markers and bars represent the averages and the standard deviations obtained from 100 training
sets, respectively. Broken curves represent the theoretical prediction (RS or RSB) obtained by
the replica method.

consider the limitβc � 1. Then,fRS andSRS become

−βcfRS ' − q̂c

2
1q + R̂c1R + e−2(R̂c−q̂c)

−αβc

{
εmin + 1

(1 + δ)π
2(1+2δ)/20

(
δ

2

)
(1R)(1+δ)/2 − βc

2π
√

2

√
1q

}
(9)

SRS ' − q̂c

2
1q + R̂c1R − αβ2

c

2π
√

2

√
1q + e−2(R̂c−q̂c) (10)

where1q = 1− qc and1R = 1− Rc. Solving the saddle-point equations using the above
expressions, we find that the conditionδ > 1

2 is necessary forα to increase to∞. The
obtained asymptotic solutions are classified as follows:



L444 Letter to the Editor

• In the case ofδ > 1
2,

1R ∝
(

ln α

α

)2/(2δ−1)

1q ∝ 1R R̂c ∝ ln
( α

ln α

)
q̂c ∝ R̂c

βc ∝
(

ln α

α

)δ/(2δ−1)

. (11)

• In the case ofδ = 1
2,

1R ∝ e−4F0α 1q ∝ 1R R̂c ∼ F0α q̂c ∝ R̂c βc ∝ e−F0α (12)

whereF0 is a constant.
• In the case ofδ < 1

2, perfect learning takes place, i.e.

1R = 0 1q = 0 (13)

at finite α.
Putting together all the results obtained above and using relation (5), we come to the

statements (1)–(3). From our results, we note the following. For the input noise model
studied by Gÿorgyi and Tishby [3](δ = 1), perfect learning does not exist and the asymptotic
behaviour is1εg ∼ α−2. For the output noise model studied by Opper and Haussler [4]
(δ = 0), a first-order transition from the RSB solution to perfect learning takes place. To
check these results we performed numerical simulations forδ = 0 andδ = 1. We adopted
the exhaustive method, considering all the 2N weight vectors. In the simulations of networks
with Ising weights, usually there exist finite size effects and it is difficult to find a proper
finite size scaling [14]. The situation is the same in our model. However, as shown in
figure 1, qualitatively the numerical results agree with the theoretical results.

In conclusion, the statements (a)–(c) obtained by Seung using a refined annealled
approximation agree with our statements (1)–(3) obtained by the replica method under
the one-step RSB ansatz. The conclusions support the validity of both a refined annealled
approximation and the one-step RSB ansatz.

The authors are grateful to P Davis for valuable discussions. One of the authors (YK)
was partially supported by the Japanese Grant-in-Aid for Science Research Fund from the
Ministry of Education, Science and Culture No 06260102 and No 06740325.
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